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Abstract
We demonstrate the non-universal behavior of finite-size scaling in (1+1)
dimension of a nonlinear discrete growth model involving extended particles
in a generalized point of view. In particular, we show the violation of the
universal nature of the scaling function corresponding to the height fluctuation
in (1+1) dimension. The second-order moment of the height fluctuation shows
three distinct crossover regions separated by two crossover timescales namely,
t×1 and t×2. Each regime has different scaling properties. The overall scaling
behavior is postulated with a new scaling relation represented as the linear sum
of two scaling functions valid for each scaling regime. Besides, we note the
dependence of the roughness exponents on the finite size of the system. The
roughness exponents corresponding to the rough surface is compared with
the growth rate or the velocity of the surface.

PACS numbers: 68.35.Ct, 64.60.al, 61.43.Hv, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Theoretical and experimental study of morphology of the growing surfaces and interfaces,
which are generated from various different growth processes, is a major challenge in recent
years [1–3]. Several discrete models have been proposed to study the morphology of rough
surfaces formed in different growth processes such as imbibition in porous media [4–6], thin-
film growth in molecular beam epitaxy (MBE) [7, 8] and growth of bacterial colonies [9].
These discrete models are based on simple stochastic growth rules, such as aggregation and
diffusion.

The rough surface, evolved from a non-equilibrium process, can be characterized from
the study of the moments of the average of height fluctuations, called surface width, defined
as

Wγ (L, t) =
[

1

L

L∑
i=1

[h(i, t) − 〈h(t)〉]γ
]1/γ

, (1)
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where L is the system size, 〈h(t)〉 = 1
L

∑L
i=1 h(i, t) is the average height over different sites

at time t, and γ is the order of the moment of the height fluctuation.
The dynamic formation of the rough surfaces can be realized with the numerical simulation

of discrete models. The dynamic and saturated behaviors of the rough surface are characterized
with the power-law nature of the moments of height fluctuation. The short time height
fluctuation is characterized by exponent β known as dynamic. The saturated behavior of
the surface width determines the fractal dimension (represented in terms of the roughness
exponent α) of the rough surface. The overall scaling behavior of the rough surface is studied
with the Family–Vicsek scaling ansatz [10]. W2(L, t) is the second-order moment of the
height fluctuation; one can write the Family–Vicsek phenomenological scaling ansatz as

W2(L, t) = Lαf

(
t

Lz

)
, (2)

where z = α/β and f (u) ∼ uβ [u � 1], f (u) ∼ constant [u � 1]. This scaling relation is
the central quantity of interest to study the morphology of the surface for any discrete growth
process. The values of the exponents α and z uniquely determine the universality classes of
the kinetic roughening process. The linear discrete model such as random deposition with
surface relaxation (RDSR) [11] and nonlinear discrete models such as the ballistic deposition
(BD) model [12], Eden growth (ED) model [13], restricted solid-on-solid (RSOS) model
[14] and body-centered solid-on-solid (BCSOS) model [15] have been proposed to study the
kinetic roughening of the growth processes which belong to different universality classes. A
competitive growth model consisting of two kinds of particles namely BD (with probability
1 − p) and RDSR (with probability p) was reported [16]. Two system-dependent crossover
timescales tc and τ were found to characterize the rough surface. In this model, scaling
properties follow the RDSR model for t � tc while for t � tc BD scaling properties are
dominant over the concerned regime. The nonlinear coupling (λ) is scaled with the abundance
of the particles as λ ∼ pγ . The overall scaling was found to be

W2(L, t) ∼ tβRDSR t � tc

W2(L, t) ∼ λβBD tβBD tc � t � τ

W2(L, t) ∼ (C1 + C2p
3/2)Lα t � τ. (3)

The subscripts correspond to the respective models. C1 and C2 are constants. α is the same
for both the models.

Several continuum models have also been prescribed to characterize the rough surfaces
formed due to many natural growth processes [17]. The continuum linear growth model
described by the Edward–Wilkinson (EW) equation [18] belongs to the same universality
class as that of the discrete RDSR model. The values of α and β in (1+1) dimension for this
universality class are given as α = 1/2 and β = 1/4. The nonlinear Kardar–Parisi–Zhang
(KPZ) equation [19] defines the universality class which includes the discrete growth models,
such as the BD model, ED model, RSOS model and BCSOS model. In (1 + 1) dimensions,
the scaling exponents for this class are α = 1/2 and β = 1/3 with the scaling identity

α + α/β = 2. (4)

This scaling identity follows due to Galilean invariance of the interface [20]. However,
nonlocality in the form of long-range interaction in the KPZ equation can modify the above
identity [21–23].

Instead of a strong agreement between the theoretical and numerical predictions of α and
β in the same universality class, the results do not match with several experimental findings. In
(1+1) dimensions, experiments on immiscible fluid displacement show the roughness exponent
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α lying between 0.73 and 0.89 [24–27]. Besides, experiment on growth of bacterial colonies
[28] yields α = 0.81. A possible explanation of the above-mentioned experimental results was
proposed by Zhang [29]. He suggested a model with the noise amplitude having power-law
distribution as P(η(�r, t)) ∼ η−(1+μ), where η(�r, t) is the δ-correlated noise.

During recent decades, the growth of organic crystals on inorganic substrates draws great
attention toward the application in electronic devices [30]. Thin-film growth of several organic
crystals on different substrates [31–33] has been studied experimentally. One diffusion-
limited-aggregation (DLA) type of discrete growth model [34] has been proposed to study the
kinetic roughening of the growth of pentacene film on the SiO2 substrate. The growth of organic
crystals involves particles of large sizes, namely, the molecular formule of pentacene, copper
phthalocyanin and 3,4,9,10-perylenetetracarboxylic dianhydride are C22H14, C32H16N8Cu and
C24H8O6, respectively.

Motivated by the above various growth mechanisms which involve small and extended
particles with different types of relaxation rules, we have proposed a discrete growth model
in (1+1) dimension. This model may involve particles of different sizes in a single growth
process. In this model, the particle size plays a major role in the kinetic roughening of the
surface. This model shows a morphological transition from the multifractal to unifractal
regime beyond a system-dependent characteristic length scale [35]. The morphology of the
surface depends on dominating particles in the growth process. The finite-size scaling relation
is not of the universal type as defined in equation (2), not even satisfying equation (3). A
new scaling relation is proposed to characterize the rough surface. The values of the scaling
exponents α and β are not universal for this model. It has a finite-size dependence with a
particular scaling form.

The paper is organized as follows. In section 2, we describe the model with the simulation
parameters. In section 3, we propose the scaling law characterizing the rough surface. The
effect of finite size on the scaling exponents is discussed in section 4. Porosity, a parameter
that represents the bulk nature of the system, is introduced in a new scaling form in section 5.
Finally, in section 6, the conclusions are drawn from the numerical results described in previous
sections.

2. The model and its simulation

The model introduced here contains essentially the aggregation and diffusion mechanisms
with a new idea of extended particles from a generalized point of view. The concept of these
participating particles is introduced in such a way that the particles can be of various sizes for
a single growth process. The diffusion mechanism considered here is the same for all types
of particles. In spite of this, however, the final morphology of the surface is not the same
when particles of different sizes are taking part in the growth process separately. A detailed
description of the model is given below.

The substrate lattice is taken of size L with a periodic boundary condition. The
participating particles in this model are considered as a different multiple matrix sequence
in terms of the smallest unit of the substrate lattice. In this way, if the substrate lattice is
considered as a 1 × L matrix such that the smallest unit of this lattice is a 1 × 1 matrix , then
the involving particles may be of sizes as 1 × 1 ( ), 1 × 2 ( ≡ ), 2 × 1 ( ≡ ) and
so on. From this generalized point of view, we call the particles ‘extended particles’. The
units of 1 × 1 particles at the ends of each extended particles which are facing toward the
substrate lattice will be called ‘extreme cells’. In this sense, the particles 1 × 1, 2 × 1, 3 × 1,
. . . have only one extreme cell while the particles 1 × 2, 2 × 2, 1 × 3, . . . have two extreme
cells (see figure 1, extreme cells are shown as shaded boxes).
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1 2 3 4

5 6 97 8

Figure 1. Different types of particles participating in the growth process. (1) is the 1 × 1 particle,
(2) is the 2 × 1 particle, (3) is the 1 × 2 particle and so on. The shaded boxes of each particle are
the extreme cells as defined in the text.

When these above-mentioned particles form the rough surface, a ‘stable position’ should
be maintained throughout the surface for each of the involving particles. The stable position
refers to a condition when at least one point from each of the extreme cells for each extended
particle is in contact with the columns from the substrate lattice separately. In other words, the
extended particles will attach with the substrate lattice if at least one corner from each extreme
cell is shared with the corners of the columns from the substrate lattice. In this circumstance,
the selection of the cell from the two extreme cells by the substrate lattice site is random. The
overall aggregation and diffusion mechanism of the different types of particles is described
as follows: one of the extreme cells from each of the extended particles is chosen randomly
by a substrate site, then it (the extended particle) slides according to the lower height profile
of the nearest-neighbor columns with a stable position. The process continues till the stable
position is reached. Naturally, when the number of extreme cells is one, then the selection of
this extreme cell by the substrate lattice site is completely deterministic.

It is obvious that the aggregation and diffusion mechanism of the 1 × 1 particles follows
the RDSR mechanism [11]. The 2 × 1 particles also follow the RDSR mechanism except the
height increment of the column at which it finally sticks is of two units rather than one, as
with 1 × 1 particles. Similar rules are also valid for the relaxation mechanism of the particles
of sizes 3 × 1, 4 × 1, . . .. But the case is quite different for the 1 × 2, 2 × 2, 1 × 3, . . .

particles. The mechanism of the diffusion of these particles is not of RDSR type. The growth
rules are a straightforward generalization of the RDSR model for extended particles. It seems
that the diffusion of each type of particle will cause different types of surface morphology.
For clarification, we show in figures 2 and 3 schematically the aggregation and diffusion
mechanism for the 1 × 2 and 1 × 3 particles, respectively. In both of these figures, one of the
extreme cells (I and II) corresponding to the extended particles is chosen by a site (A) of the
substrate lattice randomly.

With these rules, we have developed a model in (1 + 1) dimensions with the participating
particles having different sizes. The morphology of the surface should be determined by
particles dominating the growth process. During the growth process, bulk defects are allowed
to form. But the growth rules have been set in such a way that the voids formed in the system
are closed, so that possible overhangs should be avoided. The lateral growth property breaks
the up–down symmetry, resulting the presence of nonlinearity due to the local slope (∇h(�r, t))
fluctuation in the continuum description of the model. It was previously reported [35] that
the participation of the 2 × 1 particles in the growth process does not significantly change the
morphology of the surface generated from the RDSR mechanism. Moreover, the 1×2 particles
create voids in the system during surface growth, so KPZ type of growth characteristics may
occur. Also the up–down symmetry is broken due to the involvement of the 1 × 2 particles
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Figure 2. The aggregation and diffusion mechanism for 1 × 2 particles. Different possible cases
are shown. Here one of the extreme cell (I) is chosen by a site (A) of the substrate lattice randomly.
The case will be equivalent when the other extreme cell (II) is chosen by the site (A) of the substrate
lattice.

in the growth process. So, the scaling properties of the kinetic roughening of the surface are
expected to be modified by the nonlinearity introduced by 1 × 2 particles. For the above-
mentioned reasons we have simulated the surface and analyzed its kinetic roughening for the
surface formed due to the 1 × 2 particles only. The morphology of the surface formed due
to the deposition of 1 × 2 particles for the system size L = 200 at time 2 × 102 is shown in
figure 4 with four equal time zones. The increment of roughness of the surface with time is
evident from the figure.

The model has been simulated in the lattices of lengths L = 50 × 2n (n = 0 to n = 6).
Deposition time is taken as 104 � t � 107 depending upon the lattice size. The internal
structure of the surface is characterized by ‘intrinsic width’ [36]. The probable origin of
intrinsic width is the voids, overhangs and large local slopes. To minimize the effects from
intrinsic width, we have incorporated the noise reduction technique [36]. The noise reduction
parameter is the number of attempts per site for the actual aggregation process. In this
model, the noise reduction parameter (m) was set fixed as m = 10. With this value of m the
surface morphology shows a stable scaling behavior with repeated independent simulations.
Uniformly distributed uncorrelated noise has been taken. Depending upon the system size,
the results were averaged over 100 to 10 independent runs. Simulations were done on an IBM
Server PC with two 64-bit quad-core POWER5+ processors.

3. Non-universal scaling of kinetic roughening of the surfaces

The kinetic roughening is characterized by the scaling exponents corresponding to the moments
of height fluctuation defined in equation (1). The log–log plot of the second-order moment
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Figure 3. The deposition and relaxation mechanism for the 1 × 3 particles. Different possible
cases are shown. A random lattice site (A) chooses one of the extreme cells (I) of the extended
1 × 3 particle randomly. The choice of another extreme cell (II) gives the statistically same type
aggregation and diffusion mechanism.

of the height fluctuation for the values of lattice size 50 � L � 3200 is shown in figure 5. It
is clear from the figure that three distinct scaling regimes exist, which are separated by two
timescales namely t×1 and t×2. The situation occurring around the crossover timescale t×1

should not be confused with the situation occurring when the finite-size scaling is affected by
the intrinsic width of the system because intrinsic width is a system size-independent effect
[37]. The crossover between the intrinsic width affected regime with the unaffected regime is
independent of the system size. But from figure 5 it is clear that the crossover t×1 is system
size dependent. The scaling form of the timescale t×1 will be shown later.

To demonstrate the scaling behavior of the rough surface evolved from the present discrete
model, the time evolution of the height fluctuation corresponding to a particular system size
(L = 400) has been shown in figure 6. The nature of the plot in figure 6 is quite similar
to that of the plot for the competitive growth model consisting of RDSR and BD [16]. But
the situation is different here. Only one kind of particle is taking part in the growth process.
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Figure 4. The rough surface formed due to the deposition of 1 × 2 particles. The total number
of particles involved here has been isolated into four sets with different color shading showing the
change in roughness.
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Figure 5. Log–log plot of W2(L, t), the second-order moment of the height fluctuation as defined
from equation (1), versus t. The dotted lines are the power-law fitted according to equation (5) in
three distinct regimes.

So, no other timescale can appear depending upon the abundances of the different kinds of
particles participating in the growth process as in the discrete model described in [16]. Thus,
the scaling behavior for the present model cannot be defined by equation (3). Guided by the
nature of the scaling of a growth process [1], three power laws with different exponents have
been fitted in three different scaling regimes as follows:

W(L, t) ∼ tβ1 , t � t×1,

W(L, t) ∼ tβ2 , t×1 � t � t×2,

W(L, t) ∼ Lα, t � t×2. (5)
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Figure 6. Representation of different scaling regimes of the second-order height fluctuation
for a particular system size L=400 with the respective power-law fitting. This fit shows
α = 0.698 ± 0.002, β1 = 0.22 ± 0.02 and β2 = 1.21 ± 0.04.

Also, in figure 5 the power-law fitting for different system sizes is shown by dotted
lines. The scaling behavior shown in equation (5) indicates that, though the surface evolved
with a definite mechanism, two different growth processes belonging to different universality
classes are governing the overall kinetic roughening process. Such a scaling behavior of a
growth model has not been noted previously in the literature. The system contains three
characteristic timescales t×1, τ and t×2 (see figure 6). The timescale τ denotes the saturation
time for a growth process belonging to a certain universality class with the growth exponents
α and β1. Another growth process belonging to a different universality class seems to occur
beyond t ∼ t×1 with the growth exponents α and β2. From figure 6, we see that the two
independent growth processes with saturation timescales τ and t×2 actually determine the
crossover timescale t×1. So, the crossover timescale t×1 should depend on the timescales τ

and t×2. The crucial timescale t×1 is the crossover between these two growth processes. The
saturated rough surface is characterized by the latter growth process dominating beyond t×1.
The timescales corresponding to the two distinguished growth processes should behave as

τ ∼ Lz1

t×2 ∼ Lz2 . (6)

Also from the nature of the height fluctuation (see figure 5) it can be argued that the crossover
timescale t×1 can be scaled with the system size L as

t×1 ∼ Lχ, (7)

where z1 = α/β1 and z2 = α/β2 are the two dynamic exponents corresponding to the two
growth processes occurring in two different time regimes, χ is a different scaling exponent.
Since the crossover timescale t×1 is dependent on the other two independent timescales τ and
t×1 so the scaling exponents χ depends naturally on the two independent exponents z1 and z2.

From the scaling behavior, we argue the simplest possibility that the kinetic roughening
of the surface is occurring by the two growth processes in two different time regimes (namely,
t � t×1 and t � t×1) independently. With this consideration, we propose that the overall
morphology of the surface is governed by the scaling relation which can be represented as the
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linear sum of two scaling functions corresponding to each of the growth process dominating in
different regimes, leading to the saturated rough surface having a unique roughness exponent.
So, mathematically, the proposed scaling relation can be represented as

W2(L, t) ∼ Lα

[
f1

(
t

Lz1

)
+ f2

(
t

Lz2

)]
, (8)

where the various scaling functions are defined by

f1(u1) ∼ u
β1
1 u1 � 1

Lz1−χ

f1(u1) ∼ constant u1 � 1

Lz1−χ

f2(u2) ∼ constant u2 � 1

Lz2−χ

f2(u2) ∼ u
β2
2

1

Lz2−χ
� u2 � 1

f2(u2) ∼ constant u2 � 1. (9)

To observe the appropriate scaling and the crossover, we proceed as follows. According to
the scaling relation (8), in the time regime t � t×1, i.e. for t/Lz1 � 1/Lz1−χ the scaling
functions f 1 and f 2 will be

f1

(
t

Lz1

)
∼

(
t

Lz1

)β1

f2

(
t

Lz2

)
∼ constant.

Thus from equation (8) the scaling relation becomes

W2(L, t)/Lα ∼
(

t

Lz1

)β1

when
t

Lz1
� 1

Lz1−χ
. (10)

For the time regime t×1 � t � t×2 i.e., for 1/Lz2−χ � t/Lz2 � 1 the scaling functions
f 1 and f 2 will look like

f1

(
t

Lz1

)
∼ constant

f2

(
t

Lz2

)
∼

(
t

Lz2

)β2

.

So according to equation (8) the scaling relation reduces to

W2(L, t)/Lα ∼
(

t

Lz2

)β2

when
1

Lz2−χ
� t

Lz2
� 1. (11)

The time regime t � t×2 i.e., when t/Lz2 � 1 the scaling functions f 1 and f 2 behave like

f1

(
t

Lz1

)
∼ constant

f2

(
t

Lz2

)
∼ constant.

In this time regime, the scaling relation turns out to be

W2(L, t)/Lα ∼ constant when
t

Lz2
� 1. (12)
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Figure 7. The scaling plot in the log–log scale shows that W2(L, t)/Lα is plotted against t/Lz1

for t � Lz1 and W2(L, t)/Lα is plotted against t/Lz2 for t � Lz1 . As predicted from the scaling
relation given by equation (8), two distinct scaling functions given by equation (9) are seen to exist
prominently.

The above scaling relations in equations (10)–(12) satisfy the observation in equation (5). The
complete data collapse in the log–log plot of W2(L, t)/Lα in different time regimes as shown
in figure 7 also confirms the above scaling relation.

Thus, for this discrete model, the kinetic roughening of the surface cannot be scaled with
a unique scaling function having two independent scaling exponents. It thus deviates from the
universal nature of the scaling of the kinetic roughening of the surfaces.

The visualization of the scaling relation defined in equation (8), with the scaling functions
given in equation (9), is shown in figure 7 with the data collapse in two different time regimes
t � t×1 and t � t×1. The scaling functions have been plotted for different sets of L, α, β1 and
β2 values, because of the strong finite-size effect on α and weak finite-size effect on β1 and
β2. Though the x-coordinate for each plot is different (one is t/Lz1 and the other is t/Lz2 ), we
plot in the same graph to show the existence of two distinguished scaling regimes t � t×1 and
t � t×1. The large gap between the two scaling regimes, t � t×1 and t � t×1, is due to the
large difference of two dynamic exponents z1 and z2. Also, the long crossover region around
t ∼ t×1 is one of the reasons for such a large gap. The data collapse for scaling functions
defined in equation (9) with the exponents defined in equation (5) for the respective time
regimes defined in equations (6) and (7) confirms the scaling relation defined by equation (8).

The scaling behavior shown in figure 5 can be explained physically in the following way.
In our model, the particles diffuse along the surface in search of a stable position. During the
growth process, there is an interplay of diffusion with the finding of the stable position for each
particle. Initially, since the total number of involved particles in the growth process is small,
each particle is allowed to diffuse throughout the surface. So, within this time, diffusion of
particles dominates over the process of finding the stable position. After the relaxation, when
a 1 × 2 particle sticks to the substrate lattice, it implies that the constituent two 1 × 1 particles
stick with the same height. Thus, from the 1 × 1 particle point of view the height–height
fluctuation also decreases. For these two reasons, the overall height–height fluctuation of the
surface during this time period will be very small, resulting in a small value of the dynamic
exponent (β). However, with the increase of time, more and more particles take part in the
growth process. Due to the relaxation rules there is a fair probability of getting a stable
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position for each particle within the short-range sites. Effectively, the particles are restricted
to the connected sites of the lattice site on which they were deposited. In other words, the
particles are now localized almost stopping the long-range relaxation. Thus, an instability
occurs due to the piling of particles on the upper terraces and restriction of the relaxation
on the lower terraces. This increases the height–height fluctuation, resulting a large value of
the dynamic exponent (β). This effect is quite similar to the Ehrlich–Schwoebel (ES) effect
[39–43] which arises due to the presence of an ES barrier. This effect induces an instability by
hindering step-edge atoms on upper terraces from going down to lower terraces in the MBE
type of growth processes. A discrete solid-on-solid model [44] of epitaxial growth without
the bulk defect was proposed, which takes into account the ES effect with the introduction
of a parameter (Rinc) called the incorporation radius as an ES barrier. Another reasonably
realistic bulk defect-induced discrete model [45] of epitaxial growth in (1 + 1) dimensions was
presented in such a way so that the kinetic roughening is controlled by the interplay of the
mound instability with the KPZ roughening. In this model, the diffusion of the particles was
partially controlled by the parameter E, which actually selects the direction of diffusion with
a probability exp(−E). In both of the above models, instability occurs due to the presence of
a step-edge barrier; in the former case it is infinite while in the latter case it is finite. However,
in our model, we do not place any step-edge barrier explicitly; the instability occurring here
is completely self-organized.

The complicated scaling behavior of the rough surface evolving from the present discrete
model is represented by a linear sum of two independent scaling functions corresponding to
different growth processes. Now we point out the unusual behavior of the scaling function
around t ∼ t×1. The crossover around t×1 leads to a morphological ‘phase transition’ from
one universality class to another. Such a morphological phase transition with a unique growth
mechanism has not been observed previously for any discrete growth model. In this context,
we may also mention that another morphological linear–nonlinear ‘phase transition’ is seen to
occur around a critical probability of deposition of the 1 × 2 particles, beyond a characteristic
length scale, for a competitive growth model involving particles of sizes 1×1, 2×1 and 1×2
[35]. Below we would like to study the variation of the roughness exponents with the system
size L.

4. Finite-size effect on the roughness exponent

The earlier work by Krug and Meakin [38] has shown that for a nonlinear KPZ growth model
the roughness exponents were affected by the finite-size dependence of the steady-state growth
rate of the system. The demonstration of the finite-size effect on growth rate of evolution of
the surface is shown first. The growth rate of the surface is defined as V (L, t) = d〈h(t)〉

dt
.

According to the suggestion of Krug and Meakin [38], the steady-state growth rate is scaled
with the system size L as

V (L, t → ∞) = V (L → ∞) − 
L−ν . (13)

The scaling behavior of velocity V in equation (13) is shown in figure 8. The
fitting shows ν = 0.61 ± 0.05, with an asymptotic limit of the steady-state velocity is
V (L → ∞) = 1.083 ± 0.02. It was predicted [38] that the roughness exponent for a
large enough system for growth models belongs to the KPZ universality class, would be
related to ν as

α = 1 − ν/2. (14)
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Figure 8. Fitting of steady-state velocity in the asymptotic limit versus L−ν with ν = 0.61 ± 0.05.
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Figure 9. Finite-size dependence of the roughness exponent α. The fitting of α with L−δ shows
that δ = 0.57 ± 0.03.

The strong finite-size effect on α is also observed in the present model. The following
scaling relation for the finite-size dependence on α was suggested [46] earlier:

α(L) = α(L → ∞) + ϒL−δ. (15)

In figure 9, the α values are fitted according to the above scaling relation given by equation
(15) with δ = 0.57 ± 0.03. For an asymptotically infinite system, the roughness exponent
α(L → ∞) = 0.794 ± 0.005 which is comparable with the prediction in equation (14).
The relation between the exponents shown in equation (14) is based on the realization that
the Family–Vicsek scaling relation (equation (2)) is satisfied. In the hydrodynamic limit, the
present model satisfies the scaling relation given in equation (8) rather than in equation (2). So,
it can be argued that the correction due to the finite-size dependence of the roughness exponent
will be not like that of the model which follows KPZ type of growth. We have compared these
two models because they both have inclination-dependent current due to the lateral growth
property, which is the source of KPZ-like behavior in the growth process. Growth models with
power-law distributed noise events P(η(�r, t)) ∼ η−(1+μ) show such values of α [47, 48] with
different values of μ. However, in our present model, the noise distribution is δ-correlated
with uniform amplitude. Rare events are not occurring here. With the time evolution of the
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system, a multifractal behavior is also seen to occur in the present model [35], similar in nature
as that of the rare event dominated growth model [49].

The values of the two dynamic exponents β1 and β2 remain steady for a large system
size. The values of these two dynamic exponents are found to be β1 = 0.22 ± 0.03 and
β2 = 1.22 ± 0.01 for large enough systems. Such a large value of the dynamic exponent β2

has still not been observed in the literature. Due to strong finite-size dependence of α and
weak finite-size effect on the values of β1 and β2, the crossover timescale t×1 is dependent
on the system size L with an exponent χ as given in equation (7). Moreover, α + z1 �= 2
and α + z2 �= 2; this immediately points out the breakdown of the Galilean invariance of the
system. It is to be noted that the value of the dynamic exponent β1 is very close to that of
the EW model with β1 = 1

4 . Above the system-dependent timescale t ∼ t×1 the dynamic
exponent β2 has a very high value. The transition of the dynamic exponent from a low to
a higher value can be visualized by looking critically to the individual configuration of the
surface and the bulk. As per the aggregation and diffusion rules, it appears that initially the
surface moves compactly without having voids and that is why the dynamic exponent (β1)
in that region is close to that of the RDSR model. At later times, voids are incorporated
into the system and an ES-like instability is found to occur. This self-organized ES effect
triggers the rapid roughening of the surface. The dynamic exponent (β2) becomes high in that
region. The experimental observation of rapid roughening involving extended particles in the
growth of organic thin film (diindenoperylene) was reported previously [50].

5. Bulk properties and its scaling

To obtain a deep insight into the internal structure of the interface, the bulk properties of the
system are of great interest. The diffusion mechanism for the present growth model is unique
by its definition. Closed voids created due to such a diffusion mechanism made the system
porous in its own way. So, the bulk property will be different from the other porous systems,
created from different kinds of aggregation and diffusion mechanisms. The bulk properties of
a system can be quantified with the definition of porosity. Since the number of closed voids
can be determined accurately, we define, porosity P for this particular system in a similar way
as defined in [51]:

P = Nv/Nt , (16)

where Nv = number of voids and Nt = number of voids + number of particles deposited. A
deposition process where the number of particles is conserved, is characterized by the particle
flux J. As shown by Krug [52], the deposit density ρ can be related to the growth velocity v as

ρ = J/v. (17)

According to equation (17), the deposit density, which actually characterized by the
quantity porosity, will be scaled with the system size as that of the velocity with the modification
due to the particle flux dependence on the system size in the asymptotic limit. To see the
asymptotic limit of the porous structure of the system at saturation with system size, we
propose a scaling relation of the porosity as

P(L, t → ∞) = P(L → ∞) + �L−η. (18)

The above-proposed scaling relation is new in the present literature.
From the physical point of view, porosity can be defined as the reverse of the deposit

density. That is

P = 1 − ρ. (19)
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Figure 10. Plot of porosity in the asymptotic limit with L−η with the exponent η = 0.72 ± 0.02.

From equation (17) for uniform flux J

1 − P = J/v, P ∼ v − 1. (20)

Figure 10 shows the behavior of the porosity at the asymptotic limit with different system
sizes. It shows that asymptotic value of the porosity P(L → ∞) as 0.087 ± 0.005 and the
coefficient � = 0.34 ± 0.013. The prediction from equation (20) is well in agreement with
the results shown in figures 8 and 10.

6. Conclusion

The kinetic roughening of a surface created due to a nonlinear discrete growth model is
studied here. Several features, not previously observed corresponding to kinetic roughening,
are observed in the present model in (1+1) dimensions. To summarize, we mention
the following points systematically. The finite-size scaling of the rough surface shows
a different type scaling nature. Two distinct timescales, corresponding to the height
fluctuation, emerge in the system in (1+1) dimensions. They separate three scaling regimes
with different scaling exponents as well as scaling functions. To characterize this kinetic
roughening, a new scaling relation is proposed, which is represented as the linear sum of
two scaling functions valid for two distinct scaling regimes. The existence of two scaling
regimes with small and large values of the dynamic exponent β is well explained with
the occurrence of a self-organized ES like instability (caused due to the localization of the
extended particles) which triggers the rapid roughening of the surface. Due to the finite-
size effect on the growth rate, the scaling exponents are also affected by the finite size of
the system. The finite-size effect on the roughness exponent is scaled with a scaling relation.
The scaling exponent for this scaling relation compares well with the prediction made by Krug
and Meakin. The bulk nature of the system for different sizes is shown through a new scaling
relation.
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